跳转至

7.11 SQL 方言兼容

Tip

2.1 版本开始, Doris 可以支持多种 SQL 方言,如 PrestoTrinoHivePostgreSQLSparkClickhouse 等等。通过这个功能,用户可以直接使用对应的 SQL 方言查询 Doris 中的数据,方便用户将原先的业务平滑的迁移到 Doris 中。

Warning

该功能目前是实验性功能,您在使用过程中如遇到任何问题,欢迎通过邮件组、 GitHub Issue 等方式进行反馈。

1 部署服务

  1. 下载最新版本的 SQL 方言转换工具

    Tip

    SQL 方言转换工具基于开源的 SQLGlot ,由 SelectDB 进行二次开发,关于 SQLGlot 可参阅 SQLGlot 官网。

    SQL Convertor 并非由 Apache Doris 维护或认可,这些工作由 CommittersDoris PMC 监督。使用这些资源和服务完全由您自行决定,社区不负责验证这些工具的许可或有效性。

  2. 在任意 FE 节点,通过以下命令启动服务:

    Bash
     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    # 配置服务端口
    
    vim apiserver/conf/config.conf
    
    # 启动 SQL Converter for Apache Doris 转换服务
    
    sh apiserver/bin/start.sh
    
    # 如需前端界面, 可在 webserver 中配置相应的端口并启动, 不需要前端则可以忽略以下操作
    
    vim webserver/conf/config.conf
    
    # 启动前端界面
    
    sh webserver/bin/start.sh
    

    Tip

    • 该服务是一个无状态的服务,可随时启停

    • apiserver/conf/config.conf 中配置 port 来指定任意一个可用端口,配置 workers 来指定启动的线程数量。在并发场景中,可以根据需要调整,默认为 1

    • 建议在每个 FE 节点都单独启动一个服务

    • 如需启动前端界面,可以在 webserver/conf/config.conf 中配置 SQL Converter for Apache Doris 转换服务地址,默认是 API_HOST=<http://127.0.0.1:5001>

  3. 启动 Doris 集群( 2.1 或更高版本)

  4. 通过以下命令,在 Doris 中设置 SQL 方言转换服务的 URL

    SQL
    1
    MySQL> set global sql_converter_service_url = "<http://127.0.0.1:5001/api/v1/convert>"
    
    • 127.0.0.1:5001SQL 方言转换服务的部署节点 ip 和端口。

2 使用 SQL 方言

目前支持的方言类型包括:

  • presto

  • trino

  • clickhouse

  • hive

  • spark

  • postgres

示例:

2.1 Presto

SQL
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
mysql> CREATE TABLE  test_sqlconvert (
         id int,
         start_time DateTime,
         value String,
         arr_int ARRAY<Int>,
         arr_str ARRAY<String>
     ) ENGINE=OLAP
     DUPLICATE KEY(`id`)
     COMMENT 'OLAP'
     DISTRIBUTED BY HASH(`id`) BUCKETS 1
     PROPERTIES (
     "replication_allocation" = "tag.location.default: 1"
     );
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO test_sqlconvert values(1, '2024-05-20 13:14:52', '2024-01-14',[1, 2, 3, 3], ['Hello', 'World']);
Query OK, 1 row affected (0.08 sec)

mysql> set sql_dialect=presto;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT cast(start_time as varchar(20)) as col1,
            array_distinct(arr_int) as col2,
            FILTER(arr_str, x -> x LIKE '%World%') as col3,
            to_date(value,'%Y-%m-%d') as col4,
            YEAR(start_time) as col5,
            date_add('month', 1, start_time) as col6,
            REGEXP_EXTRACT_ALL(value, '-.') as col7,
            JSON_EXTRACT('{"id": "33"}', '$.id')as col8,
            element_at(arr_int, 1) as col9,
            date_trunc('day',start_time) as col10
         FROM test_sqlconvert
         where date_trunc('day',start_time)= DATE'2024-05-20'
     order by id;
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
| col1                | col2      | col3      | col4       | col5 | col6                | col7        | col8 | col9 | col10               |
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
| 2024-05-20 13:14:52 | [1, 2, 3] | ["World"] | 2024-01-14 | 2024 | 2024-06-20 13:14:52 | ['-0','-1'] | "33" |    1 | 2024-05-20 00:00:00 |
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
1 row in set (0.03 sec)

2.2 Clickhouse

SQL
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
mysql> set sql_dialect=clickhouse;
Query OK, 0 rows affected (0.00 sec)

mysql> select  toString(start_time) as col1,
             arrayCompact(arr_int) as col2,
             arrayFilter(x -> x like '%World%',arr_str)as col3,
             toDate(value) as col4,
             toYear(start_time)as col5,
             addMonths(start_time, 1)as col6,
             extractAll(value, '-.')as col7,
             JSONExtractString('{"id": "33"}' , 'id')as col8,
             arrayElement(arr_int, 1) as col9,
             date_trunc('day',start_time) as col10
          FROM test_sqlconvert
          where date_trunc('day',start_time)= '2024-05-20 00:00:00'
     order by id;
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
| col1                | col2      | col3      | col4       | col5 | col6                | col7        | col8 | col9 | col10               |
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
| 2024-05-20 13:14:52 | [1, 2, 3] | ["World"] | 2024-01-14 | 2024 | 2024-06-20 13:14:52 | ['-0','-1'] | "33" |    1 | 2024-05-20 00:00:00 |
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
1 row in set (0.02 sec)